Refine Your Search

Topic

Search Results

Technical Paper

TRUCK PERFORMANCE— Computed versus Measured Data

1958-01-01
580040
THIS paper outlines tests made to verify the SAE recommended practice for estimating truck ability performance described in TR-82. The author has collected data on four vehicles and compares it with the results computed in TR-82 and with a Method X. The data includes information on air and rolling resistance, effect of wind velocity, chassis friction power, grade ability, and the like. The author concludes that the SAE method of TR-82 is at the present time the most reliable method for computing truck ability.
Technical Paper

Considerations Affecting the Life of Automotive Camshafts and Tappets

1956-01-01
560015
WORK done in a development program relative to camshafts and tappets in the design of the Chrysler overhead-valve V-8 engine is described. The types of failure encountered are categorized as wear, scuffing, and fatigue. An accelerated test procedure was designed to promote early cam-tappet failures, and the development work was predicated upon the results obtained therefrom. Among the variables affecting the failure conditions, major emphasis was placed on material development. Specifically, the greater amount of time was spent in determining the optimum tappet material, while some time was devoted to the camshaft material. A combination of adjusted chemical composition and heat-treatment of hardenable cast iron for camshaft and tappets provided the best solution to the failure problems.
Technical Paper

Predicting ROAD PERFORMANCE of Commercial Vehicles

1950-01-01
500172
A SIMPLE method of predicting truck performance in terms of grade ability at a given road speed, taking into consideration rolling resistance, air resistance, and chassis friction is presented here. A brief review of fundamental considerations is given first, then the method recommended for predicting vehicle ability at a selected speed, and finally a few words on the prediction of maximum possible road speed and selection of gear ratios. The basis of the solution is the determination and expression of vehicle resistances in terms of horsepower - that is, in terms of forces acting at a velocity. A convenient method of solving the grade problem at a given speed is by means of a tabular computation sheet, which is given, together with tables and charts. These assist in making the computation an easy one as well as giving the necessary data on vehicle resistances.
Technical Paper

Design Features of the JUNKERS 211B AIRCRAFT ENGINE

1942-01-01
420123
THE Junkers 211B engine follows the usual German practice of very large displacements and conservative mean effective pressures and rotative speeds. However, the relative light weight per unit of displacement results in a net weight per horsepower that is not far above its competitors. Fully automatic devices which control propeller speed, manifold pressure, mixture ratio, spark advance, and supercharger gear ratio follow the German policy of removing all possible distractions from the pilot. This is one of three large liquid-cooled engines known to be produced in quantity in Germany; it powers an impressive percentage of the Luftwaffe. While of external appearance and displacement that resemble the Daimler-Benz DB-601 engine, the fundamental construction, detail design practice, and metallurgy of the Junkers 211B are surprisingly different.
X